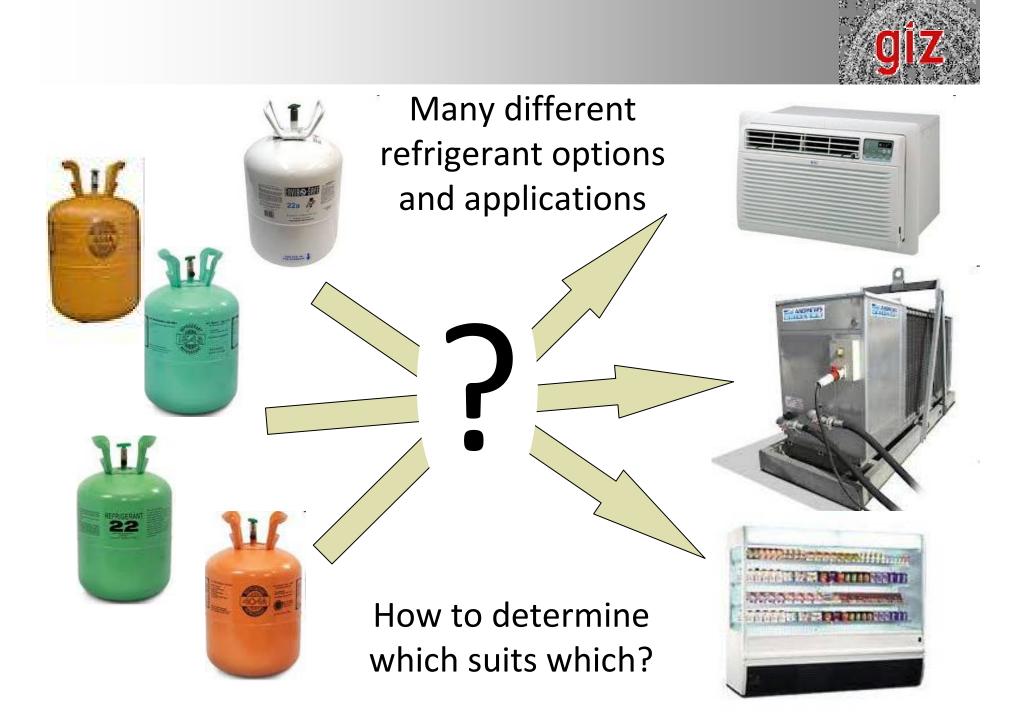


Technical Options for reducing greenhouse gas emissions using natural refrigerants and energy efficiency

September 2012, San Jose, Costa Rica

Daniel Colbourne

Global warming gas emissions also come from energy use as and refrigerant leakage



CO₂ emissions from electricity use High-GWP emissions from equipment

Agenda

- 1. Description of subsectors
- 2. Discussion of technical options (TOs)
- General description of technical options and examples
- 4. Examples of technical options
- 5. Refrigerant effect on efficiency
- 6. Reducing energy use in RAC equipment
- •7. Concluding remarks

1. Subsectors – Introduction

- Description of subsectors and system types
 - Provide overview of types of applications and common systems

1. Subsectors

- Many different uses of refrigerants
- Important to reduce down to manageable categories
- Main sectors: Refrigeration; Air conditioning
- Initially divide system types, then categorise into subsectors where evaluation of TOs is similar
 - Not practicable to evaluate TOs for each and every miniscule system type
- Neglect certain subsectors
 - -Small market (minimal refrigerant use)
 - -Complicate, non-uniform types of systems

1. Subsectors

Summary of subsectors – air conditioning

Sub-sector	System type	BAU refrigerant
	Self-contained air conditioners	[R22], R410A, R407C
	Split residential air conditioners	[R22], R410A, R407C
	Split commercial air conditioners	[R22], R410A, R407C
Unitary air conditioning	Duct split residential air conditioners	[R22], R410A, R407C
Conditioning	Commercial ducted splits	[R22], R410A, R407C
	Rooftop ducted	[R22], R410A, R407C
	Multi-splits	[R22], R410A, R407C
Chillers	Air conditioning chillers	[R22], R410A, R407C
	Process chillers	[R22], R410A, R407C
Mobile AC	Car air conditioning, large vehicle	[R22], R410A, R407C

R22 GWP = 1800; R410A GWP = 2100, R407C GWP = 1700

1. Subsectors

Summary of subsectors - refrigeration

Sub-sector	System type	BAU refrigerant
Domestic refrigeration	Domestic refrigeration	R134a
	Stand-alone equipment	R134a, R404A
Commercial Refrigeration	Condensing units	[R22], R404A
	Centralised systems for supermarkets	[R22], R404A
Industrial refrigeration	Low-temperature non-food-industry	[R22], R404A
	Stand-alone (FPCS)	R134a, R404A
	Condensing units (FPCS)	[R22], R404A
	Centralised systems (FPCS)	[R22], R404A
Transport Refrigeration	Refrigerated trucks/trailers	R134a, R404A

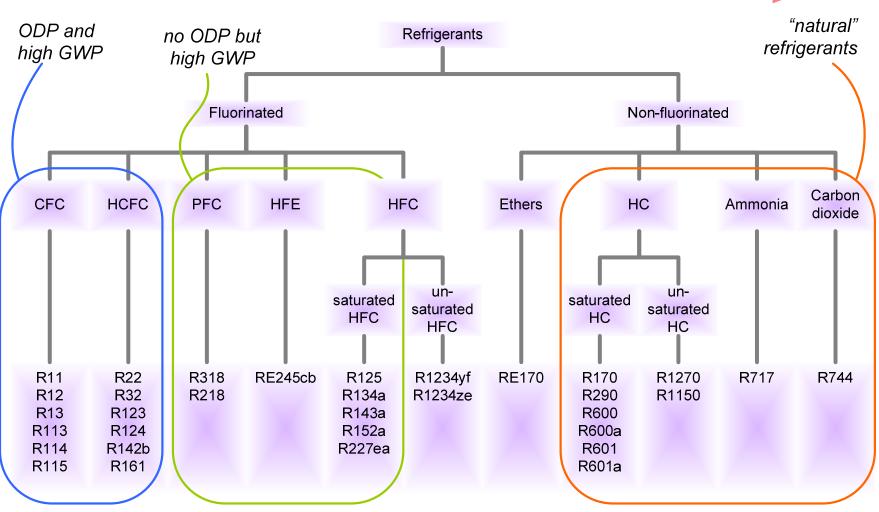
*FPCS = food processing and cold storage

R22 GWP = 1800; R134a GWP = 1400, R404A GWP = 3800

2. Technical Options – Introduction

- Discussion of technical options (TOs)
 - Provide a summary of technical options that may be considered for different subsectors in order to reduce global warming emissions
 - -Identifying the most suitable options

- Purpose of adopting TOs to reduce emissions
 - -(Direct) refrigerant-related emissions
 - Energy-related emissions → In Costa Rica the emissions from electricity production is very low, to energy-related emissions are negligible
- Several different categories of technical options
 - -Containment
 - -Alternative refrigerants
 - -Alternative refrigerants and alternative system
 - -Not-in-kind cycles
 - -Efficiency improvements


- Containment (and similar)
 - -Leak reduction (design/construction of system)
 - Leak reduction (through service & maintenance practices)
 - –Charge size reduction (system/component design)
 - Recovery and recycling (improved tooling and practices)

Lower GWP

2. Technical Options (TOs)

Alternative refrigerants

- Alternative refrigerants
 - -HC R600a (GWP = 3, flammable, low pressure)
 - -HC R290/ R1270 (GWP = 3, flammable)
 - -HFC R161 (GWP = 12, flammable, toxivity under reveiw)
 - -HFC R152a (GWP = 140, flammable)
 - -R717 (GWP = 0, low flammability, higher toxicity)
 - -R744 (GWP = 1, high pressure, low critical temperature)
 - -R718 (GWP = 0, very low pressure, freezing point = 0 deg C)
 - –unsat-HFC (e.g., R1234yf, R1234ze, etc; GWP < 10, low flammability)
 - -HFC/unsat-HFC blends (unknown to date; GWP 300 1000...?)
 - -DME/R-E170 (GWP = 3, flammable)

Alternative refrigerants + systems

- –Low-GWP + liquid secondary [centralised] (e.g., glycol, brine)
- –Low-GWP + PCM secondary [centralised] (e.g., ice slurry)
- –Low-GWP + CO2 secondary [centralised]
- –Low-GWP + liquid secondary [discrete] (e.g., glycol, brine)
- -Low-GWP + CO2 cascade
- Distributed water-cooled (central chiller with localised water-cooled condensing units)

* "Low-GWP" includes any low-GWP refrigerant (HCs, R717, unsat HFCs, etc)

Not-in-kind cycles

- -Air cycle (Brayton)
- -Absorption (liquid) (solar or gas driven)
- -Adsorption (solid) (solar or gas driven)
- -Desiccant/evaporative (solar or gas driven)
- -Thermo-electric (Peltier)
- –Magnetic
- –Stirling
- -Ejector cycle (solar or gas driven)
- Generally all of these have low efficiency, high cost, limited applicability, etc

- Not all TOs are suitable for all applications
- Many TOs are therefore filtered out, according to various criteria
- TEWI rating (incl. energy related + GWP emissions)
 - –GWP, charge size, in-use leak rate, EOL leakage, seasonal efficiency, energy production emissions factor
- Degree of demonstration (for subsector)
 - -Has TOs been proven, demonstrated, only theory, etc
- Extent of application of TOs (for subsector)
 - What is maximum percentage of subsector that could be viably covered by TOs (limited by cost, efficiency, regs, etc)

Selected TOs used for deeper evaluation

- –Leak reduction (design/const)
- -Leak reduction (maintenance)
- Charge size reduction
- Recovery and recycling
- -HC600a
- -HC290/HC1270
- -R717
- -R744
- -unsat-HFC
- -HFC/unsat-HFC blends (R4???)

- –Low-GWP + liquid secondary (centralised)
- –Low-GWP + CO2 secondary (centralised)
- –Low-GWP + CO2 cascade (centralised)
- –Low-GWP + liquid secondary (discrete)
- –Low-GWP + distributed water-cooled cond units

Summary of subsectors – air conditioning

Sub-sector	System type	Technical options
Unitary air conditioning	Self-contained air conditioners	
	Split residential air conditioners	
	Split commercial air conditioners	HC R290/HC 1270
	Duct split residential air conditioners	Unsat-HFC (R1234yf, etc) HFC/unsat-HFC blends (R4???,
	Commercial ducted splits	
	Rooftop ducted	
	Multi-splits	Unsat-HFC (R1234yf, etc) HFC/unsat-HFC blends (R4???)

Summary of subsectors – air conditioning

Sub-sector	System type	Technical options
Chillers	Air conditioning chillers	HC R290/HC 1270 R717 (ammonia) R744 (CO2)
	Process chillers	R744 (CO2) Unsat-HFC (R1234yf, etc) HFC/unsat-HFC blends (R4???)
Mobile AC	Car air conditioning, large vehicle	HC R290R744 (CO2) Unsat-HFC (R1234yf)

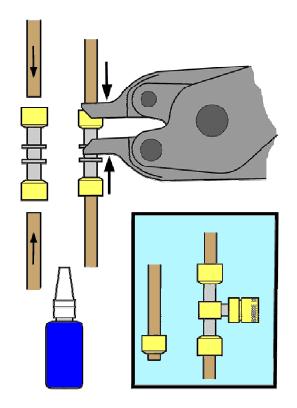
Summary of subsectors - refrigeration

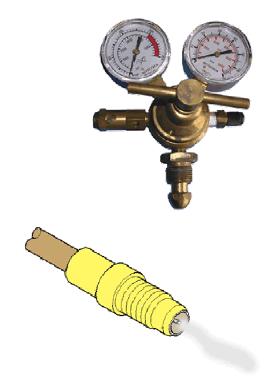
Sub-sector	System type	Technical options
Domestic refrigeration	Domestic	НС 600а
	refrigeration	Unsat-HFC (R1234yf, etc)
	Stand-alone equipment	НС 600а, НС 290
		R744 (CO2)
		Unsat-HFC (R1234yf, etc)
	Condensing units	НС 290/НС 1270
		HC 290/HC 1270 (discrete indirect)
		Unsat-HFC (R1234yf, etc)
Commercial Refrigeration		HFC/unsat-HFC blends (R4???)
		Low-GWP + liquid secondary
	Centralised systems for	Low-GWP + CO2 secondary
		Low-GWP + CO2 cascade
	supermarkets	Low-GWP + distributed low-GWP
		water-cooled cond units

Summary of subsectors - refrigeration

Sub-sector	System type	Technical options
	Stand-alone (FPCS)	HC 600a, HC 290 R744 (CO2) Unsat-HFC (R1234yf, etc)
Industrial refrigeration	Condensing units (FPCS)	HC 290/HC 1270 HC 290/HC 1270 (discrete indirect) Unsat-HFC (R1234yf, etc) HFC/unsat-HFC blends (R4???)
	Centralised systems (FPCS)	Low-GWP + liquid secondary Low-GWP + CO2 secondary Low-GWP + CO2 cascade Low-GWP + distributed low-GWP water-cooled cond units
Transport Refrigeration	Refrigerated trucks/trailers	HC 290/HC 1270 R744 (CO2) HFC/unsat-HFC blends (R4???)

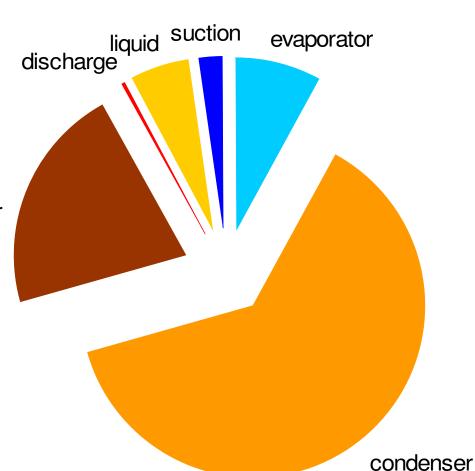
3. TOs – general – Introduction


- Description of technical options (TOs) in general
 - -A general description of what the technical options are
 - Brief explanation of the safety implications of certain refrigerants, including safety standards

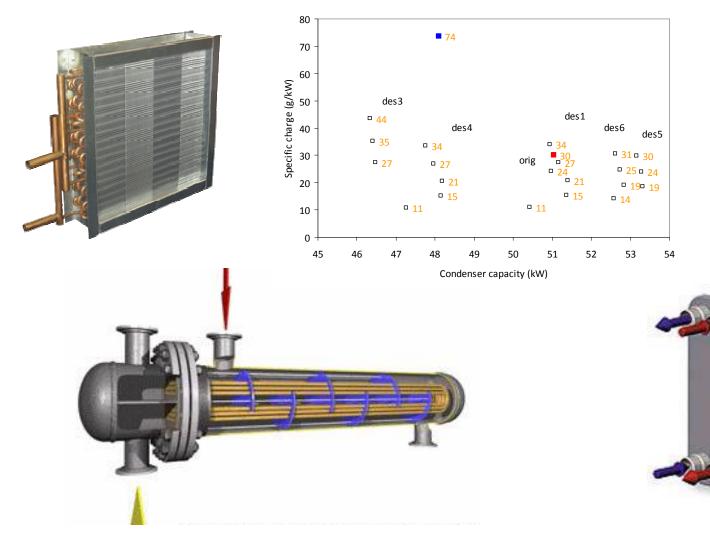


- 3. TOs general Leak reduction (design/construction)
- Improve the tightness of systems (use existing refrigerant)
- Good design
 - Avoid vibration, external mechanical impact, possibility of corrosion, etc
- Selection of components
 - -Avoiding flare connections, schraeder valves, good parts
 - Components tested under EN 16084 (Qualification of tightness of components and joints)
- Tightness testing
 - Systematic testing of systems, use of helium tracer gas and high sensitivity gas detectors

- 3. TOs general Leak reduction (maintenance)
- Minimise emissions of refrigerant by improved service and maintenance
- Encourage more conscientious behaviour of technicians



3. TOs – general – Charge size reduction


- If refrigerant charge can be reduced, total emitted quantity will be less
- Standard techniques
 - —Compact HXs, brazed plate, etc
 - —Smaller liquid line sizes Mini-channel compressor condensers
 - —Avoid receivers (use subcooling region)
 - Minimise accumulator volume
 - —Carefully selected oil (low solubility)

3. TOs – general – Charge size reduction

Selection of heat exchangers

- 3. TOs general Recovery and recycling
- Minimise emissions of refrigerant by improved refrigerant recovery
 - During service and maintenance and particularly at end of life/disposal
- Encourage more conscientious behaviour of technicians
- Availability of recovery machines, recovery cylinders and take-back scheme for recovered refrigerant

Refrigerant	R-600a (iso-butane)
Туре	Hydrocarbon
ODP	0
GWP	<3
Safety classification	A3 (high flammable, low toxicity)
Vapour pressure	3.5 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$2 – 6 / 7 – 20 per kg

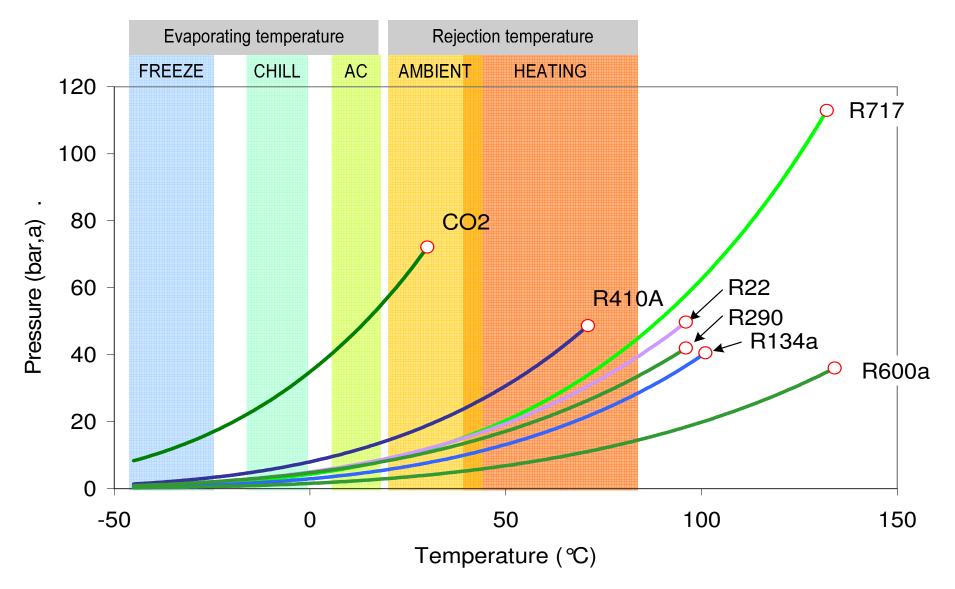
Refrigerant	R-290 (propane)
Туре	Hydrocarbon
ODP	0
GWP	<3
Safety classification	A3 (high flammable, low toxicity)
Vapour pressure	9.5 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$2 – 6 / 7 – 20 per kg

Refrigerant	R-1270 (propylene)
Туре	Hydrocarbon
ODP	0
GWP	<3
Safety classification	A3 (high flammable, low toxicity)
Vapour pressure	11.5 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$2 – 5 / 3 – 20 per kg

Refrigerant	R-717 (NH3)
Туре	Ammonia
ODP	0
GWP	0
Safety classification	B2 (low flammable, higher toxicity)
Vapour pressure	10.0 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$0.5 – 2 / 1 – 4 per kg

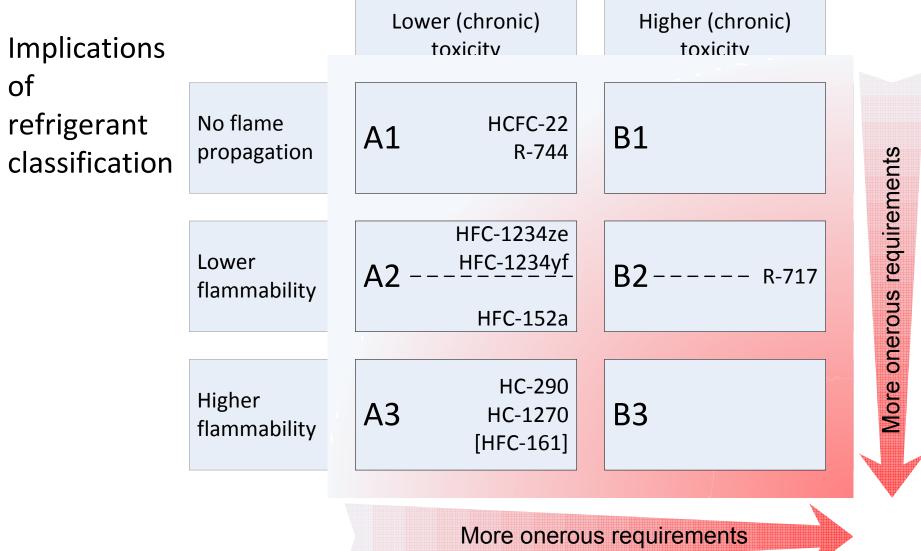
Refrigerant	R-744 (CO2)
Туре	carbon dioxide
ODP	0
GWP	1
Safety classification	A1 (non-flammable, low toxicity)
Vapour pressure	64.3 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$0.5 – 2 / 5 – 7 per kg

Refrigerant	R-1234yf
Туре	HFC
ODP	0
GWP	3
Safety classification	A2 (low flammable, low toxicity)
Vapour pressure	6.8 bar @ 25 deg C
Experience	Limited
Availability	Not commercially available
Price	\$45 – 65 / 45 – 80 per kg


Refrigerant	R-1234ze
Туре	HFC
ODP	0
GWP	12
Safety classification	A2 (low flammable, low toxicity)
Vapour pressure	5.0 bar @ 25 deg C
Experience	Limited
Availability	Limited
Price	\$30 – 50 / 30 - 65 per kg (?)

Refrigerant	R-4??? [not yet known]
Туре	HFC/unsat-HFC blend
ODP	0
GWP	300 – 1000 ???
Safety classification	A1, A2 (non-/low flammability,
	low toxicity)
Vapour pressure	[not known]
Experience	None
Availability	Not commercialised
Price	\$ high

3. TOs – general – alternative refrigerants pressure range



3. TOs – general – alternative refrigerants safety characteristics

Refrigerant	Safety class	ATEL (kg/m3)	LFL (v/v)	Pressure (bar)
HCFC-22	A1	0.3	-	10.4
R-744	A1	0.07	-	64.3
HFC-1234ze	A2(L)	[0.28]	7.5%	5.0
HFC-1234yf	A2(L)	0.47	6.3%	6.8
HFC-152a	A2	0.14	4.8%	6.0
HC-1270	A3	0.01	2.5%	11.5
HC-290	A3	0.09	2.1%	9.5
R-717	B2(L)	0.00035	13%	10.0

3. TOs – general – safety rules for alternative refrigerants Main topics within RAC safety standards

- Classification of refrigerants, occupancy, systems
- Refrigerant charge size limits
- Safe design and testing of components and pipes
- Safe design and testing of assemblies (systems)
- Electrical safety, sources of ignition
- Installation areas, positioning, pipework, mechanical ventilation, gas detection
- Instructions, manuals, data-plates
- Refrigerant handling

Standard	Equipment type	Covers
EN 378	Commercial and industrial	Components, safety devices, system design, location, charge size limits, refrigerant
[ISO 5149]*	Commercial and industrial	classification, installation site, maintenance
60335-2-24	Domestic fridges and freezers	Marking, pressure testing, electrical
60335-2-40	Factory built a/c and heat pumps	Marking, pressure testing, maintenance, electrical, charge limits
60335-2-89	Factory built commercial fridges	Marking, pressure testing, electrical

* Currently still at draft stage

	Max charge (occupied)	PL (g/m ³)	Max charge - outside	Safe electrics
HCFC-22	No limit	300	No limit	Νο
R-744	No limit	100	No limit	No
HFC-1234ze	3.1 – 25 kg	[40]	No limit	Yes
HFC-1234yf	2.3 – 25 kg	60	No limit	Yes
HFC-152a	5 – 25 kg	27	No limit	Yes
HC-290	1 2 E ka	8	25 kg/no limit	Yes
HC-1270	1 – 2.5 kg	0	25 kg/no limit	TES
R-717	2.5 – 25 kg	0.4	No limit	Some

- Must recognise that some new refrigerant (HCs, unsat-HFCs) are flammable
 - -Conventional refrigerants non-flammable
- Must therefore follow new measures
 - -Limiting charge size of direct systems
 - -Avoid potential ignition sources on equipment
 - -Minimise leakage
 - -Marking on equipment
- All must be handled by trained technicians
 - -Should be certified
- Follow safe application guidelines
 - -E.g., for servicing, conversion, etc

4. Examples of application of technical options (TOs)Examples of application of (TOs)

 For different subsectors and system types, examples of where different technical options are being used

4. Examples of TOs

Sub-sector	System type	Technical options
	Self-contained air conditioners	
	Split residential air conditioners	
	Split commercial air conditioners	
Unitary air conditioning		HC R290/HC 1270
conationing		

- De'Longhi
 - -Portable type air conditioners
- Safety aspects
 - -Designed to EN 60335-2-40
 - -Charge size up to 400 g of R290
- Cost of R290 systems same as HFC products
- Energy consumption
 - R290 gives 5-10% higher efficiency than HFC options

- Godrej company
 - Since 1897, appliances business since
 1958
 - One of largest privately held industrial corporations in India
- R290 AC production line
 - -Capacity approx. 180,000 units annually
 - Expected emissions reduction 500,000 tonnes CO₂ per year

designed by curiosity

Godrej products

- -Currently two sizes developed
- Each has four models, corresponding to different
 Indian efficiency star rating categories
- -Data for "five star" products

Model Name	R290-12K	R290-18K
Operating Mode	Cooling	Cooling
Cooling Capacity	3400 W	4900 W
Rated Power Input	914 W	1318 W
Rated Input Current	4 A	6 A
EER	3.72	3.72
Refrigerant	R 290	R 290
Refrigerant Charge	0.290 kg	0.340 kg

High efficiency

Very low specific refrigerant charge (<80 g/kW)

Also includes leak safety mechanism to leak safe

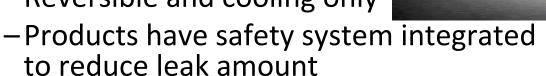
- 4. Examples of TOs Residential room AC
 Midea company
 - One of China's largest air-conditioning companies
 - Main production of domestic AC, commercial AC, central AC, refrigerators, other home appliances, compressors, etc
- R290 AC production line
 - -Approx. 200,000 per year
 - -Production expected to begin mid-2012
 - (Also converted compressor production line for R290)

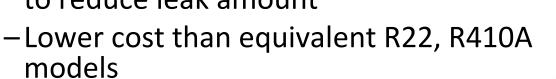
Midea products

- -Currently two sizes developed
- -Both reversible
- -Other products developed
- -Safety systems under development

Model	Indoor unit (mm)	Outdoor unit (mm)	Cooling capacity	EER	Heating capacity	СОР	R290 charge
KFR- 26GW/N7 Y-Y(C4)	850 × 275 × 160	780 × 540 × 250	2.6 kW	3.4	2.8 kW	3.6	290 g
KFR- 35GW/N7 Y-Y(C4)	900 × 285 × 160	780 × 540 × 250	3.5 kW	3.4	3.7 kW	3.6	350 g

- 4. Examples of TOs Residential room AC
- Gree company


- -Worlds largest air-conditioner producer
- -Room AC, ducted, centralised, chillers, etc
- R290 AC production line
 - -R290 AC production line approx. 100,000 per year
 - -Initial runs production began 2011



Gree products

- -Several models developed
- -Split, window, portable
- Reversible and cooling only

Capacity (kW)	EER (W/W)	Charge (g)	Max noise ID/OD (dB)	Dimensions (mm) Indoor
2.7	3.55	265	38/52	830×284×2 05
3.5	3.52	330	41/52	Outdoor 760×257×5

- Benson air conditioning
 - -Single cooling-only, reversible and heat-recovery splits
- Safety aspects
 - -Designed to AS/NZS 1677 (similar to EN 378)
 - -Charge size up to 1000 g of R290
- Cost of R290 systems less than R410A
- Efficiency (cooling and heating) better than competing R410A and R22 products

		BENHC 24 R / RC	BENHC 34 R / RC	BENHC 50 R / RC	BENHC 65 R / RC	BENHC 85 / RC
Cooling Capacity	Watts	2310	3400	5100	6300	8200
Heating Capacity	Watts	2600	3400	5600	6600	8400
Energy Efficiency Cooling	EER (W / W)	3.12	3.17	2.91	2.9	2.96
Energy Efficiency Heating	COP (W / W)	3.71	3.57	3.07	3.3	2.91

4. Examples of Technical Options (TOs)

Sub-sector	System type	Technical options
Unitary air conditioning	Commercial ducted splits Rooftop ducted	— HC R290

4. Examples of TOs – Rooftop and ducted splits

- Aicool, Indonesia
 - Rooftop ducted and ducted split systems developed to use R290
- Safety aspects
 - Designed to EN 378; up to 2.5 kg of R290 per refrigerant circuit
 - -Cost slightly higher than R22 systems

. .

4. Examples of TOs – splits

- Advansor
 - Air-cooled R744 (CO2) condensing untis for ducted systems
- Safety aspects
 - -Designed to EN 378
- Cost more than HFC
- R744 gives higher efficiency than HFC in cooler climates

Model: compFORT	AC IX0	AC 2x0	AC 3x0	AC 4x0	AC 5x0	AC 6x0	AC 7x0
Compressors MT	1	2	3	4	5	6	7
MT capacity [kW] [At 3'C evaporating and 32'C outdoor air]	50	100	140	172	215	258	301

4. Examples of TOs

Sub-sector	System type	Technical options	
	Air conditioning chillers	HC R290/HC 1270	
Chillers	Process chillers	R717 (ammonia) R744 (CO2)	

- Several manufacturers using HCs
 - Benson, Bright, Earthcare, Frigadon, Futron, Klima-therm, Weatherite, York/JCI, others...
- All produce chillers using HC and other refrigerants (HFC, HCFC, ammonia, etc)
- Used for both refrigeration as well as air conditioning applications

- York/JCI
 - -Air-cooled chillers
- Safety aspects
 - Designed to EN 378; up to 25 kg of R290
- Cost marginally more than HFC products, but with "green premium"
- R290 gives ~15% higher COP than R407C, R410A products

Туре	Cap.* kW at 50 Hz	Power input kW	COP unit dim
HSAS-95-1	95	27,6	3,84
HSAS-95-2	95	27,0	3,84
HSAS-140-1	132	38,8	4,01
HSAS-140-2	132	35,1	3,95
HSAS-200-1	178	53,2	4,24
HSAS-200-2	178	46,0	4,29
HSAS-260-1	218	59,2	4,01
HSAS-260-2	218	54,2	4,01
HSAS-340-1	265	75,5	4,22
HSAS-340-2	265	68,1	4,19

- Frigadon
 - -Air-cooled chillers
- Safety aspects
 - -Designed to EN 378
 - -Charge size up to 15 kg of R1270
- Cost of R1270 systems marginally more than HFC products
- Energy consumption
 P1270 since bisher office
 - R1270 gives higher efficiency

Cooling capacities/ flow rates	Cooling capacity* Brine temp return/flow					
Unit	+22/+17°C	+12/+7°C	0/-4°C	-4/-8°C		
FWC-15	1,8	1,3	0,8	0,7		
FWC-25	3	2,2	1,4	1,1		
FWC-35	4,3	3,1	1,9	1,6		
WC-50	5,9	4,1	2,3	1,9		
WC-80	9,2	6,7	4,1	3,3		
FWC-110	13,3	9,7	6	4,8		
WC-130-MT	-	-	7,6	6,2		
WC-130	18,3	13	7,6	6,2		
WC-170	22,5	16,3	10	8,1		
WC-220	-	20,7	12,8	10,5		
WC-220-S(1)	-	-	14,7	12		
WC-220-S(2)	-	-	-	15		
WC-300	36,7	28,2	20	15,2		
WC-400-MT	-	-	27	21,1		
WC-400	50	39,4	27	21,1		
WC-500	-	45,4	31,5	24,3		
WC-500-S(3)	11	54,2	34,3	28,6		
WC-500-S(4)		-	42,8	35,6		
WC-500-S(5)	-	-	52	43,8		
WC-650	79,9	59,4	39,5	32,8		
WC-720	93,5	69,9	45,9	38,1		
WC-870	-	86,5	56,1	47,2		
WC-870-S(5)		-	66,4	55,9		
WC-870-S(6)	-	-	78,7	66,1		
WC-870-S(7)	-	11. 18 7 21	86,4	72,5		
WC-870-S(8)	-	-	95,1	80		
				100000000000		

88.8

Benson

- -Air-cooled (scroll, screw)
- -Water-cooled (scroll, screw)
- Safety aspects
 - Designed to AS/NZS 1677
 - -Charge size up to 25 kg of R290 (per circuit)
- Cost of R290 systems not more than HFC
- R290 gives higher efficiency than HFC

	Model Number		kWr		Heat ecovery KW	KW Input
	BENCW-1P-CHC5-130C03	MHR	129.8		32.5	29.1
	BENCW-1P-CHC5-170C03	MHR	167.3		41.8	34.6
	BENCW-1P-CHC5-190C03	MHR	189.2		47.3	39.8
	BENCW-1P-CHC5-250CO3WHR		252.9		63.2	54.2
	BENCW-1P-CHC5-280CO3		280,6		70.2	58.7
	BENCW-1P-CHC5-320C03		318.2		79.6	67.7
	BENCW-1P-CHC5-400C03		399.4		99.9	82.7
	BENCW-1P-CHC5-480C03				121.2	96.8
	BENCW-1P-CHC5-570C03 BENCW-1P-CHC5-530C03		572.3 627.7		143.1	115.0
Mo	del Number	10.	Wr		(W	127.7
MIG	act rumber		oling		put	146.9
		00	oning		cool	162.1 174.7
DENOW 4	P-CHSC-145CO3A		6.7	-	48	193.6
		1.0				230.0
BENCW-1	P-CHSC-165CO3A	16	5.9	5	1.3	243.8
BENCW-1	P-CHSC-220CO3A	22	1.8	7	1.4	255.4
BENCW-1	P-CHSC-250CO3A	24	9.2	7	7.4	285.7
BENCW-1			-	^		293.7
BENCW-1	Model Number		kWr Coolir		kW Input	324.2
			COUL	'Y	Cool	123.1
BENCW-1	BENCW-1P-CH-28CC	34	27.8		84	349.4
BENCW-1	BENCW-1P-CH-33CO	34	33.3		10.2	180.9
BENCW-	BENCW-1P-CH-42CC		41.9		12.7	571.4 545.2
BENCW-1					16.8	140.2
BENCW-1	BENCW-1P-CH-65CC	3A	65.6		20.3	
BENCW-1			82.6 2		25.5	
о.	BENCW-1P-CH-110CO)3A	109.	7	33.5	
	BENCW-1P-CH-130CO	D3A	131.	1	40.7	
	BENCW-1P-CH-145C	D3A	144.	4	42.8	
	BENCW-1P-CH-165CO	D3A	165.	3	50.9	
	BENCW-1P-CH-215C	D3A	216.	6	65.7	
BENCW-1P-CH-255CO3A		D3A	257.	4	78.2	
	BENCW-1P-CH-285CO	D3A	284.	5	88.6	
						1

- Grasso/GEA
 - -Air-cooled and water-cooled R717 (ammonia) chillers
- Safety aspects
 - Designed to EN 378
 - Possible to install in public areas
- Cost more than HFC

R717 gives higher efficiency than HFC

Chiller type	Cooling capacity (kW)	Condensing capacity (kW)	Electric power (kW)	EER
	R717 +12/+6 °C	R717 +30/+35 °C		
BluAstrum 500	576	684	118	4.88
BluAstrum 800	752	892	154	4.88
BluAstrum 900	869	1,029	176	4.94
BluAstrum 1000	1,100	1,295	215	5.12
BluAstrum 1500	1,385	1,636	275	5.04
BluAstrum 1800	1,710	2,011	330	5.18

BluAstrum 1000 is already available; other types will follow in 2012/2013

Shopping mall 1,020 kW

Star

- Air-cooled and water-cooled R717 (ammonia) chillers
- Safety aspects
 - -Designed to EN 378
- Cost more than HFC
- R717 gives higher efficiency than HFC
- Some models thermosyphon/freecooling

- Green& Cool
 - Air-cooled and water-cooled R744 (CO2) chillers
- Safety aspects
 - -Designed to EN 378
- Cost more than HFC
- R744 gives higher efficiency than HFC in cooler climates

4. Examples of Technical Options

Sub-sector	System type	Technical options
Domestic refrigeration	Domestic refrigeration	НС 600а

4. Examples of TOs – Domestic refrigeration (fridges, freezers)

- About 30 40% of new domestic fridge/freezers on HCs (R600a)
 - –Total production ~ 450 m
 - All European manufacturers using R600a in majority of production
 - Large proportion from Korea,
 Japan, China
 - Introduction in South America and now North America
- Charge size up to 150g

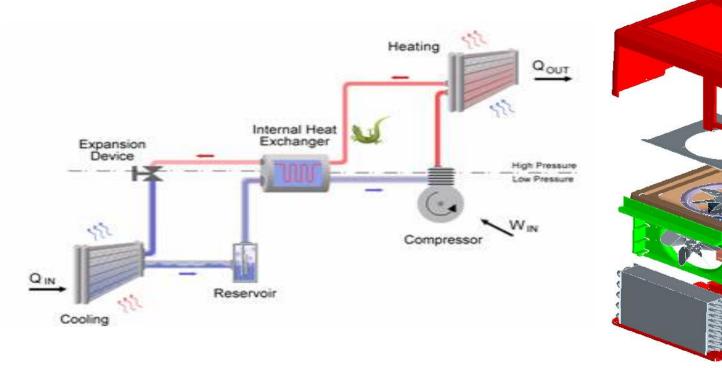
4. Examples of Technical Options (TOs)

Sub-sector	System type	Technical options	
Commenter	Stand-alone equipment	HC 600a, HC 290 R744 (CO2)	
Commercial Refrigeration			

- Many integral commercial units on HCs
 - –Numerous manufacturers
 - Range from mini glass door bottle coolers, vending machines, ice-cream freezers, catering units, to multi-deck cabinets
 - -Charge sizes from 100g to 1kg

Verco

- -Commercial display cabinets
- Safety aspects
 - -Designed to EN 378
 - -Charge size up to 500 g of R290
- Cost of R290 systems similar to HFC products
- Energy consumption
 - -R290 gives 15-20% lower power than HFC options



- Coca Cola adopting "cassette" concept for bottle coolers and vending machines
 - The components of a CO2 refrigeration system are similar to those used in an R134a system

- CO2 and R134a global S-Cassette (Cassette design 1) tested in a 510L cabinet
 - Energy savings between brackets
 - CO2 cassette equipped with capillary tube. R134a cassette equipped with expansion valve. This gives an advantage of few % for R134a system

TCCC's Test Conditions	CO2 - (KWh/day)	R134a – (KWh/day)
<u>D</u> (40.6°C - 75%RH)	8.25	7.78 (5.7% lower)
<u>C</u> (32.2°C - 65%RH)	5.79 (16% lower)	6.91
<u>B</u> (23.9 [°] C - 45%RH)	4.97 (3.3% lower)	5.14

- CO2 and R134a global S-Cassette (cassette design 2) tested in 550L cabinet & different CO2 comp
 - Energy savings between brackets
 - Both CO2 AND R134a cassettes are equipped with capillary tube

TCCC's Test Conditions	CO2 - (KWh/day)	R134a — (KWh/day)	
<u>D</u> (40.6 [°] C - 75%RH)	9.67 (24% lower)	12.77	60 22
<u>C</u> (32.2°C - 65%RH)	5.78 (30% lower)	8.30	COCCERCIAL REALESS
<u>B</u> (23.9°C - 45%RH)	4.40 (21.8% lower)	5.63	

4. Examples of TOs – Commercial refrigeration (standalone)

- Palfridge
 - -All types of commercial stand-alone cabine
 - -Factory based in Swaziland, southern Afric
- Complete conversion January 2010
 - -By GTZ, funded by German finance ministr
 - -Complete conversion of production line
 - -Charge size up to 300 g of R290 and R600a
- Cost of R290 models lower than R134a, R404A models (better prod line)
- Energy use much lower than HFC options (between 8 24% lower, so far)
 - Partly due to refrigerant, partly due to improved design

4. Technical Options (TOs)

Sub-sector	System type	Technical options
Commercial Refrigeration	Condensing units	HC 290/HC 1270 HC 290/HC 1270 (discrete indirect) R744

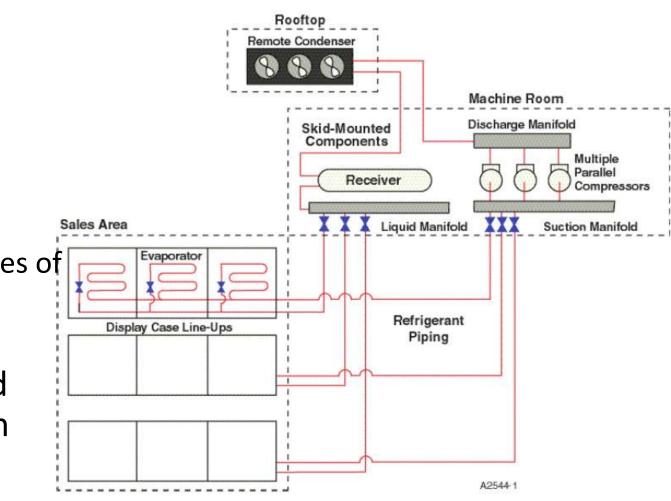
- 4. Examples of TOs condensing units
- Danfoss
 - -Range of R290 condensing units
 - -Smaller capacity range
- Safety aspects
 - -Designed to EN 378/EN 6035-2-89
- High efficiency

Evap. temp in °C	-45	-40	-35	j -3	0 -	25	-23.3	-20	-15	-10	-5	0
SC18CNX -BG3		271	374	4 49	01 6	521	669	766	924	1096		
SC18CNX -BG4		287	39	5 51	9 6	58	710	814	986	1173	1376	1594
Evap. temp in °C	-45	-40	-35	-30	-25	-23.3	3 -20) -1	5 -10	-5	0	5
SC12CNX -BG3		219	284	358	446	479	54	7 66	5 799	949	1116	1298
SC12CNX -BG4		225	292	369	462	497	57	1 69	8 846	1014	1202	1410

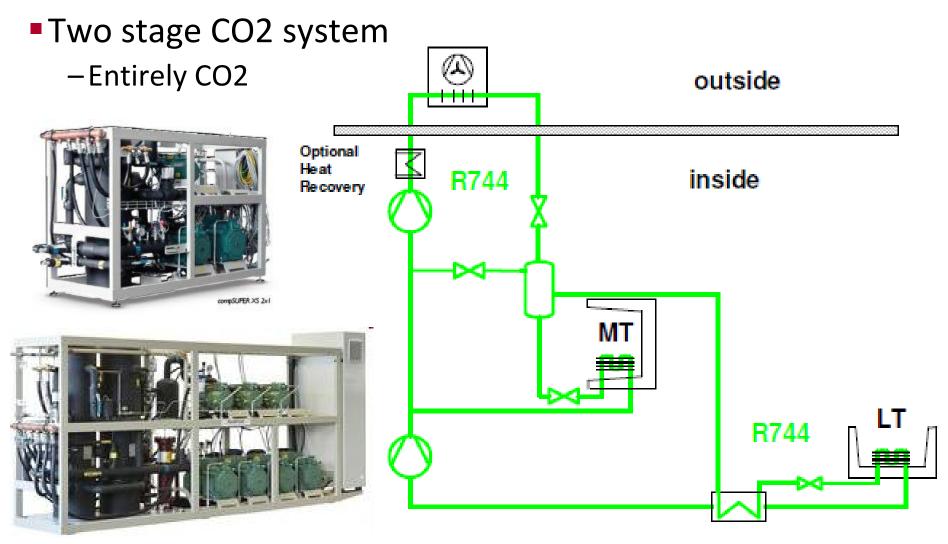
4. Examples of TOs – condensing units

- Advansor
 - -Range of R744 (CO2) condensing units
- Safety aspects
 - -Designed to EN 378
- Cost more than HFC
- R744 gives higher efficiency than HFC

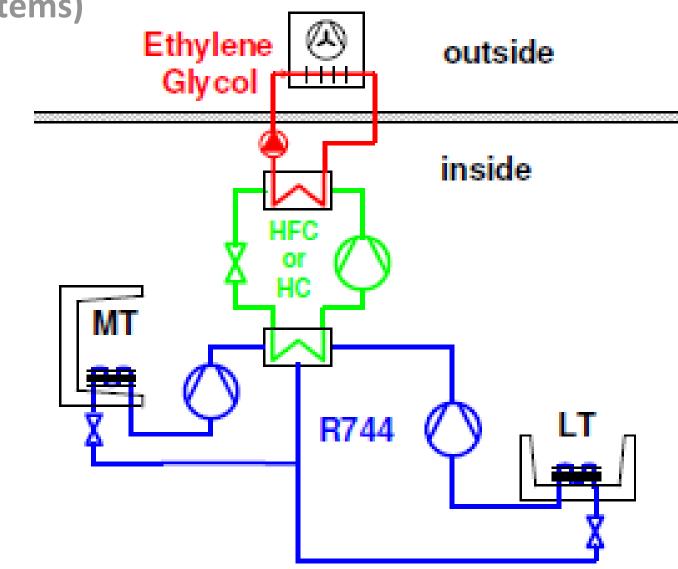
. MAR WHICH	LEWICCHES.	Elizabeth (Carrier)		GENERGESSIN	NORSOLAND.
age	1		2	1	#
No.		ista.			
al search			影響的		



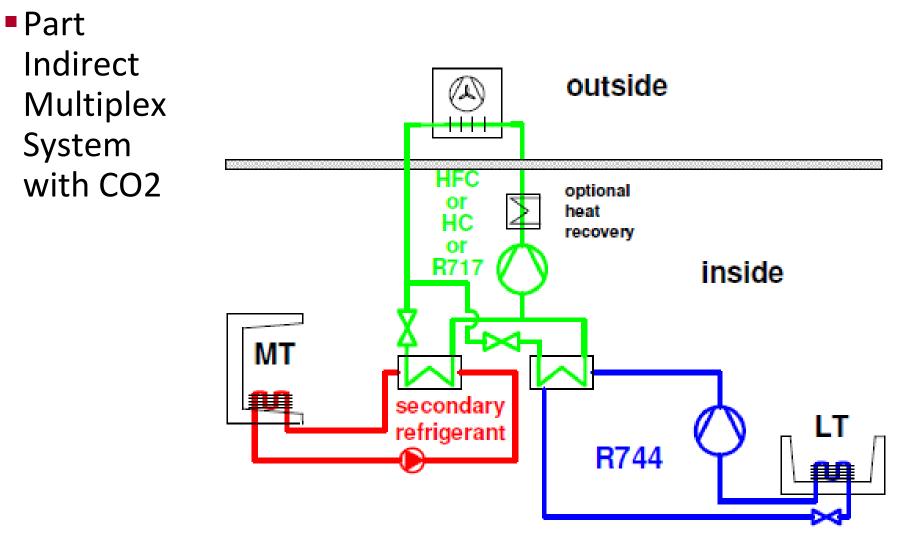
4. Examples of Technical Options (TOs)


Sub-sector	System type	Technical options
Commercial	Centralised systems for supermarkets	Low-GWP + CO2 secondary
Refrigeration		Low-GWP + CO2 cascade
		Low-GWP + distributed low-GWP water-cooled cond units

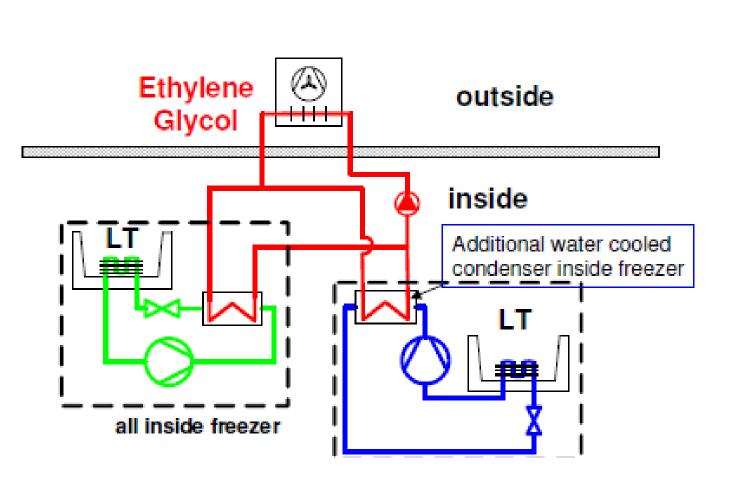
- Conventional system
 - Pack system, pipework distributed to cases and coldstores
 - Large quantities of R404A
- Separate ventilation and heating system



- Cascade Indirect Multiplex System with CO2
 - –Utilises HFC, HC or NH3 in high stage
 - -CO2 in low (LT and MT) stages


- Example of
 - -Supermarket installation
 - -air-cooled gas cooler
 - -Compressor racks

- Example of
 - -Supermarket installation
 - -water cooled packs



 Indirect circuit with integral condensing units

Waitrose supermarket (UK)

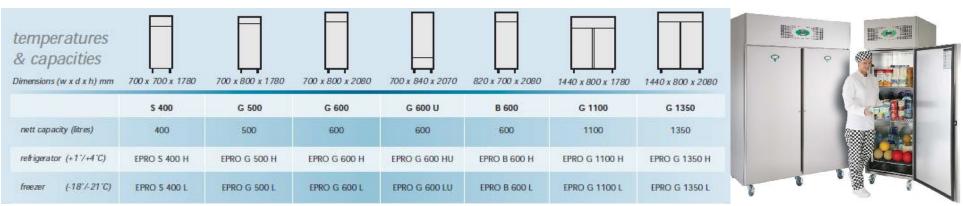
-All new installations to use HCs

- Safety aspects
 - Designed to EN 378
 - -Charge size of cabinets up to 500g
 - –Charge size of chiller ~ 5 kg per circuit
- System based on chilled water-circuit, removing heat from water-cooled condensing units in display cases

4. Examples of Technical Options (TOs)

Sub-sector	System type	Technical options		
	Stand-alone (FPCS)	HC 600a, HC 290		
Industrial refrigeration				

- 4. Examples of TOs Industrial refrigeration (stand-alone)
- [food processing and cold storage]
- Professional food and drinks preparation equipment
 - -Shake sundae machine
 - Post-mix beverage machine
 - -Juice dispenser
- Ice makers
- Cold storage
 - Meat freezers and chilled produce rooms


- 4. Examples of TOs Industrial refrigeration (stand-alone)
- [food processing and cold storage]
- Williams refrigeration
 - -Commercial stand-alone cabinets
 - -(also supplied with R134a and R404A)
- Safety aspects
 - -Designed to EN 378
 - -Charge size up to 150 g of R290
- Cost of R290 systems same as HFC products
- Energy consumption
 - -R290 gives 15% lower kWh/24h than HFC option
- R290 provides lower noise levels, operates efficiently up to +43°C ambient

- 4. Examples of TOs Industrial refrigeration (stand-alone)
- [food processing and cold storage]
- Foster Refrigerator
 - -Commercial stand-alone cabinets
- Safety aspects
 - -Designed to EN 60335-2-89
 - -Charge size up to 150 g of R290
- Cost of R290 systems same as HFC products
- Energy consumption
 - -R290 gives 15% lower kWh/24h than R134a/R404A option

- 4. Examples of TOs Industrial refrigeration (stand-alone)
- [food processing and cold storage]
- Gram refrigeration
 - -Commercial stand-alone cabinets; R290 is standard
- Safety aspects
 - -Designed to EN 60335-2-89
 - -Charge size up to 150 g of R290 and R600a
- Cost of R290 systems same as HFC products
- R290 has lower energy consumption than HFC options

4. Examples of TOs

Sub-sector	System type	Technical options
Industrial refrigeration	Centralised systems (FPCS)	Low-GWP + liquid secondary Low-GWP + CO2 secondary Low-GWP + CO2 cascade

- 4. Examples of TOs Industrial refrigeration (centralised)
- [food processing and cold storage]
- System concepts similar to commercial refrigeration centralised supermarket systems
 - -Refer to supermarket equipment
- Example of cold storage and food process facility
 - -Bank of R290 chillers feeding cold storage facility

4. Examples of Technical Options (TOs)

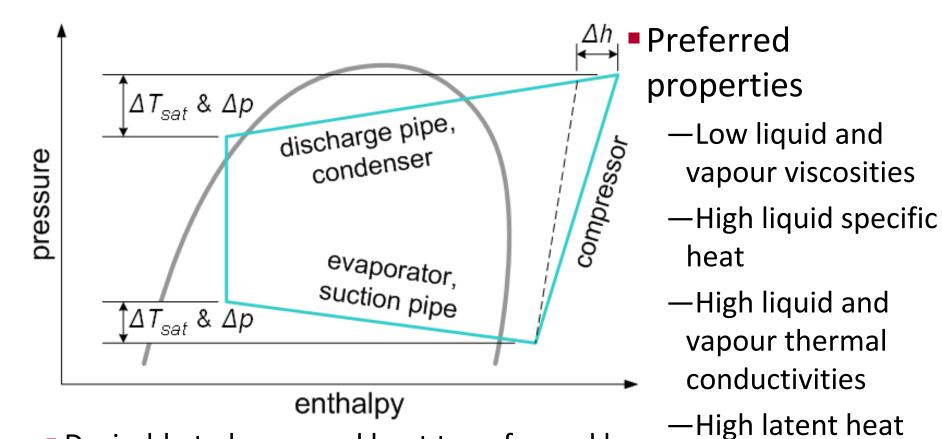
Sub-sector	System type	Technical options
Transport Pofrigoration	Refrigerated	НС 290/НС 1270
Transport Refrigeration	trucks/trailers	R744 (CO2)

4. Examples of TOs – Transport refrigeration

- Refrigerated trucks and trailers
 - Available with R290 and R744
- Reefer containers will be available with R744

- 5. Refrigerant implication on efficiency– Introduction
 Refrigerant implication on efficiency
 - The issue of refrigerant selection impact on system efficiency is often raised
 - The subject is very involved and normally required extensive discussion
 - -Here a brief overview is provided

- System energy consumption very important
 - Typically accounts for 60 90% of greenhouse gas emissions of a system
- Energy consumption is related to a number of factors:
 - —System heat load (capacity)
 - Ancillary components; electric motors for fans/pumps, controls
 - -Parasitic energy from lighting, resistance and defrost heaters
 - -Motor efficiency and mechanical losses within the compressor
 - External conditions, eg, heat sink and heat source temperatures
- Also related to design of cycle components and thermophysical properties of refrigerants



- Both component design and refrigerant properties required to achieve high efficiency
- For a given cycle (T_{cold} = 0 °C, T_{hot} = 35 °C)
 —"ideal" cycle no pressure drops, no ΔTs, etc COP = 3.4

—With losses in pipework and heat exchanger, COP = 1.5

Virtually impossible to reach "ideal" situation, but with correct design of components, there is a higher potential with natural refrigerants, then with HFCs

- Desirable to have good heat transfer and low pressure drop in evaporator and condenser
- —Small temperature glide

Refrigeran t	Critical temp. (°C)	Liquid viscosity (Pa s ×10 ⁶)	Vapour viscosity (Pa s ×10 ⁶)	Liquid sp. heat (kJ/kg K)	Liq thermal cond (W/m K)	Latent heat (kJ/kg)
R-22	96.1	216	11.4	1.17	0.095	205
R-134a	101.1	267	10.7	1.34	0.092	199
R-404A	72.0	179	11.0	1.39	0.073	166
R-407C	86.0	211	11.3	1.42	0.096	210
R-410A	71.4	161	12.2	1.52	0.103	221
R-717	132.3	170	9.1	4.62	0.559	1262
R-290	96.7	126	7.4	2.49	0.106	375
R-1270	92.4	121	7.8	2.44	0.126	378
R-744	31.0	99	14.8	2.54	0.110	231

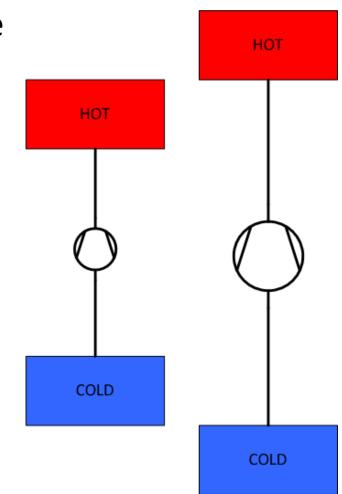
Example of split air conditioners

- -Comparison of R22 and R290 in studies published in journals
- All show improvements, range from 2 20%

Study	Improvement	Study	Improvement
Chinnaraj et al, 2010	4 – 7%	Park et al, 2007	up to 2%
Devotta et al, 2005	up to 8%	Wang et al, 2004	12 – 19%
Jin et al, 2012	4 – 12%	Xiao et al, 2006	up to 12%
Li et al, 2010	10 – 15%	Xiao et al, 2009	up to 10%
Lin et al, 2010	4 – 12%	Xu et al, 2011	7%
Liu, 2007	10-20%	Yan, 1999	up to 10%
Padalkar et al, 2010	up to 14%	Zhang et al, 2002	up to 12%
Park and Jung, 2008	up to 11%	Zhou & Zhang, 2010	up to 9%

6. Reducing energy use – introduction

- Reducing energy use
 - Although in Costa Rica, emissions arising from electricity production is extremely low
 - From global warming gas emissions perspective, reducing energy use is less significant (than refrigerants)
 - -However, useful to reduce energy use for economic reasons
 - -Brief overview of options


6. Reducing energy use – introduction

- Three fundamental contributors to efficiency
 - Refrigeration cycle
 - Parasitic losses
 - -Transient effects
- Also take into account cooling demand (heat load)
 - –Less heat absorbed = less energy
- Many of the elements that contribute to efficiency and energy use are interrelated
- List some practical options for how to achieve better efficiency and lower energy use

6. Reducing energy use – Refrigeration cycle

- Principally the way that the machine creates cold
 - -Temperature lift
 - -Temperature of the cold refrigerant
 - -Temperature of the hot refrigerant
 - -Selection of refrigerant circuitry
 - -Pressure losses within pipework
 - Properties of refrigerant (type)
 - –Oil type
- Essential to focus on component selection and circuit design

6. Reducing energy use – Refrigeration cycle – improvement examples

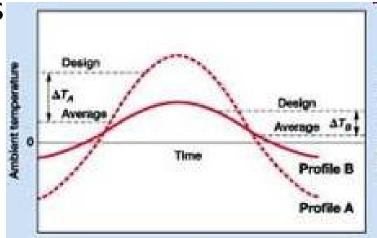
Optimise system balancing	+++
Refrigerant charge size; critical/non-critical charge	+++
Larger evaporator/condenser surface area; improved surface texture	+++
Optimise evaporator/condenser circuitry	++
Forced vs. natural convection evaporator/condenser	++
Clean evaporator/condenser (surface treatment)	+
Minimise superheat	++
Flooded evaporator	++
Reduce piping pressure losses	++
Optimise sub-cooling	+


6. Reducing energy use – Refrigeration cycle – improvement examples

Selection of compressor with optimum capacity	++
Alternative refrigerants, pure vs. mixtures	++
Use of liquid-suction heat exchanger (some refrigerants)	+
Selection of optimal lubricant	+
Use of oil separator	+
Alternative cooling cycles (e.g., Lorenz, Stirling, etc)	+++
Two, multi-stage system (e.g., for LT)	++
Improved air flow over product	+
Integrated evaporator shelving	+

6. Reducing energy use – Parasitic losses

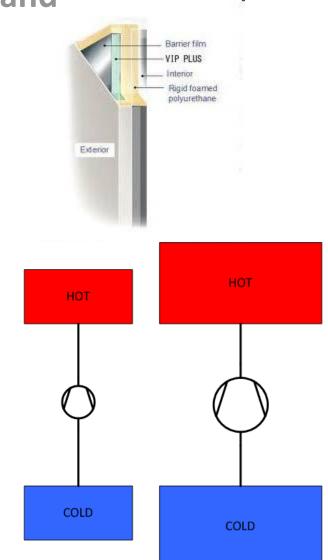
- "Parasitic" losses typically related to ancillary components, e.g.,
 - Defrost heaters
 - -Lighting
 - -Trim heaters
 - –Fans
 - –Pumps
- All 'sort of' necessary to achieve the cold, but can normally be reduced


6. Reducing energy use – Parasitic losses – improvement examples

More efficient compressors (incl. alternative compressor types, start/run methods)	+++
More efficient fan motors (e.g., ECMs)	++
More efficient fan design (higher fan blade efficiency)	+
Variable-/dual-speed fans	+
Discharge heat heaters instead of resistance heaters	+
Forced vs. natural convection evaporator/condenser	+
Off-cycle defrosting	++
Hot gas, cool gas, reverse cycle defrost	+
Low power lighting (LEDs, etc), electronic ballasts for fluorescents	++

6. Reducing energy use – Transient effects

- Transient or dynamic losses due to behaviour of the machine at non-design conditions
 - -Changes in ambient conditions
 - -Changes in heat load
 - Compressor starting
 - Pressure equalisation
- Often 'hidden' potential for improvement


6. Reducing energy use – Transient effects – improvement examples

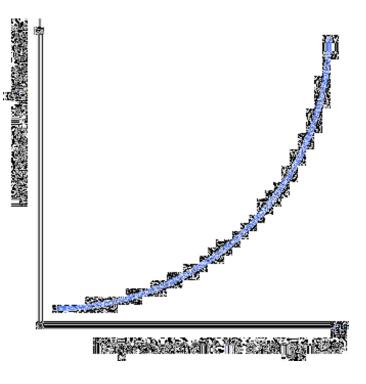
Variable-speed compressors				
Variable-capacity compressors				
Adaptive/optimised electronic control				
Expansion valve instead of capillary tube				
Floating head pressure control				
Flow regulation valves (for multi-evaporator systems)	+			
Phase-change materials within cold box, condenser	++			
Off-cycle migration valve (prevent pressure equalisation)				
Two, multi-compressors	++			

6. Reducing energy use – Cooling demand

- Not directly related to efficiency, but can reduce energy use
 - -Quality of insulation
 - -Amount of infiltration
 - –Solar gain
 - -Electrical loads
 - -Product temperature
 - –Use patterns
- A greater cooling demand (heat load) increases energy consumption

6. Reducing energy use – Cooling demand – improvement examples

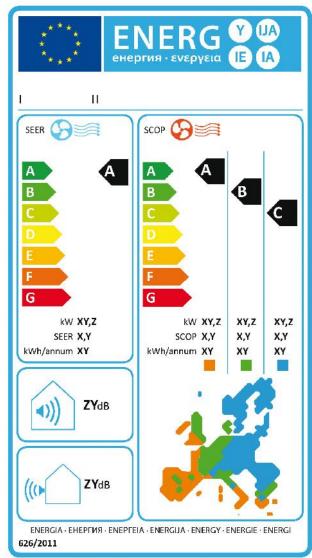
Increase cabinet insulation				
Better quality insulation (vacuum insulation panels, gas panels, alternative foams)				
Increase door insulation	+			
Decrease door leakage (better gaskets)	+			
Use of night blinds	++			
Glass door/lid	+++			
Adaptive defrosting	++			
Off-cycle defrosting	++			
Hot gas/reverse cycle defrost	+			


6. Reducing energy use – Cooling demand – improvement examples

Low power lighting (LEDs, etc), choice of ballasts for fluorescents				
External lighting	++			
Adaptive lighting	+			
Reduce IR gain (reflective glass, etc)	++			
Improve anti-sweat trim heaters / dew point control	+			
Reduce internal volume	+			

6. Reducing energy use – Integration of measures

- Benefit of above measures rarely additive
 - Typically for each additional measure, effectiveness lessens
- Eventually, adding more and more features simply adds cost
 - Must determine most cost-effective set of options
- Important to first analyse current design to determine most effective measures

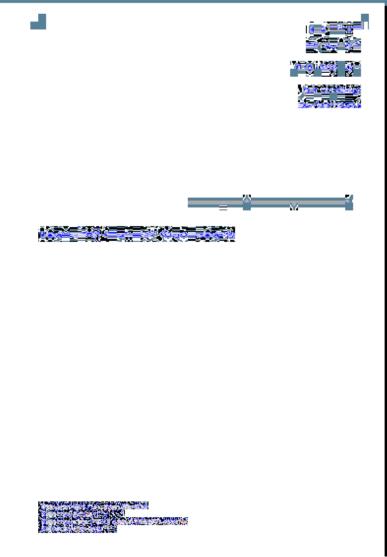

6. Reducing energy use – implementation

 Means of imposing reduction in energy

Options

-Energy labelling

Energy Efficiency Class	SEER	SCOP
A+++	SEER ≥ 8,50	SCOP ≥ 5,10
A++	$6,10 \le SEER < 8,50$	$4,60 \le \text{SCOP} < 5,10$
A+	$5,60 \le \text{SEER} \le 6,10$	$4,00 \le \text{SCOP} < 4,60$
А	$5,10 \le \text{SEER} \le 5,60$	$3,40 \le \text{SCOP} < 4,00$
В	$4,60 \le \text{SEER} < 5,10$	$3,10 \le \text{SCOP} < 3,40$
С	$4,10 \le \text{SEER} \le 4,60$	$2,80 \le \text{SCOP} < 3,10$
D	$3,60 \le \text{SEER} < 4,10$	2,50 ≤ SCOP < 2,80
Е	$3,10 \le \text{SEER} \le 3,60$	2,20 ≤ SCOP < 2,50
F	$2,60 \le \text{SEER} < 3,10$	1,90 ≤ SCOP < 2,20



6. Reducing energy use - implementation

- Means of imposing reduction in energy
- Options
 - -Minimum efficiency rules
 - -Test standards

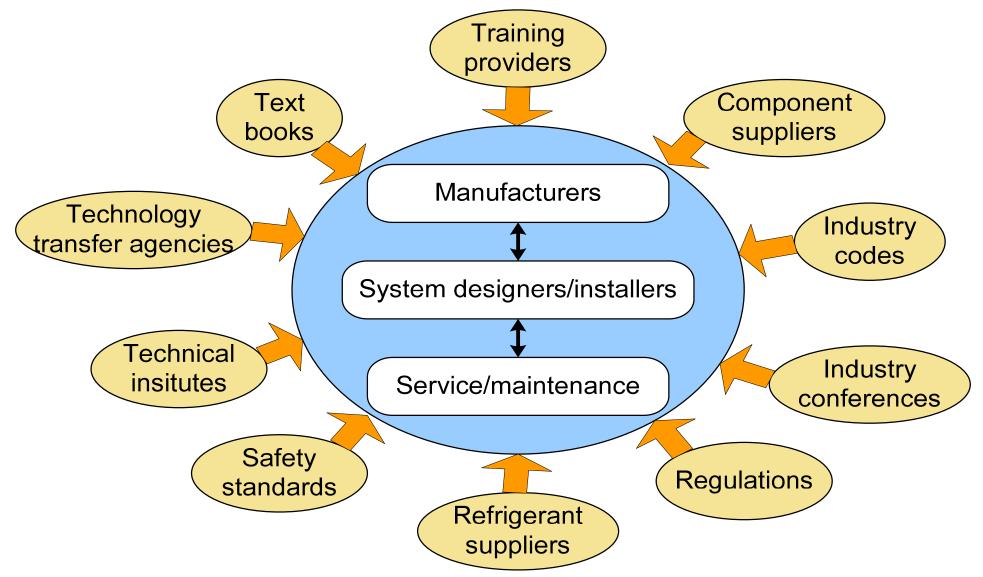
Capacity GWP		Air conditioners, except double and single duct type		Double duct Air conditioners		Single duct air conditioners	
	SEER	SCOP	EER	COP	EER	COP	
< 6 kW	>150	4.60	3.80	2.60	2.60	2.60	2.04
< 6 kW	<150	4.14	3.42	2.34	2.34	2.34	1.84
6 - 12 kW	>150	4.30	3.80	2.60	2.60	2.60	2.04
6 - 12 kW	<150	3.87	3.42	2.34	2.34	2.34	1.84

- 7. Concluding remarks...
- Concluding remarks...
 - –What next?

7. Concluding remarks...

- Due to environmental issues, many major multinational corporations adopting natural refrigerants
 - -Want to improve environmental profile
 - -Need to reduce environmental impact
 - —Anticipation of future environmental regulations
 - —Increasing number of multi-nationals implementing natural refrigerants world-wide, e.g., Refrigerants, Naturally! initiative, Consumer Goods Forum, etc
- All have HFC-free polices: result in wide use naturals

7. Concluding remarks...


- If Costa Rica wants to achieve massive reduction in refrigerant-related global warming emissions (i.e., HCFCs, HFCs, etc)
 - -It is possible to adopt widespread use of natural refrigerants
 - -However, the country but must be determined and work at it
- Most activities and developments for natural refrigerants is in Europe
 - North and South America are lagging
 - –Other Central American and Caribbean countries interested in progressing natural refrigerants should try to collaborate!
- Many regions planning to phase down HFCs but long time

- 7. Concluding remarks...
- Any activities should be sensitive to sub-sectors and equipment types
 - Some sectors easier to tackle than others (self-contained systems, mass-produced)
- Should set up implementation plan
- Must act fast to reach the 2021 target
- Need legislation and strong agreements to compel the market
 - -Max GWP quotas, GWP-related tax (or deposit scheme), etc
- Technical training should be a high priority
- Sensible to tackle on a regional levels

7. Concluding remarks...

Thank you for your attention

